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AN EXTRAPOLATION METHOD FOR A CLASS OF 
BOUNDARY INTEGRAL EQUATIONS 

YUESHENG XU AND YUNHE ZHAO 

ABSTRACT. Boundary value problems of the third kind are converted into 
boundary integral equations of the second kind with periodic logarithmic ker- 
nels by using Green's formulas. For solving the induced boundary integral 
equations, a Nystr6m scheme and its extrapolation method are derived for pe- 
riodic Fredholm integral equations of the second kind with logarithmic singu- 
larity. Asymptotic expansions for the approximate solutions obtained by the 
Nystrom scheme are developed to analyze the extrapolation method. Some 
computational aspects of the methods are considered, and two numerical ex- 
amples are given to illustrate the acceleration of convergence. 

1. INTRODUCTION AND PRELIMINARIES 

In this paper, we establish an extrapolation method for the boundary integral 
equation induced from the boundary value problem of the third kind: 

(1.1) AU(P)=O, PED, 

(1.2) u(P) = -cu(P) + g(P), P E rP= AD, 
&flp 

where D is a bounded, simply connected open region in R2 with a smooth boundary 
F. We seek a solution u E C2(D) n C1f(D) for the boundary value problem (1.1)- 
(1.2). In (1.2), np denotes the exterior unit normal to 17 at P, the function g 
is assumed given and continuous on 1, and c is a positive constant. This is the 
linear version of the boundary value problem considered in [5]. A survey [4] of 
boundary integral equation methods in R3 will help the reader to get an insight into 
the connection between boundary value problems and the corresponding integral 
equations. 

Using Green's representation formula for harmonic functions, we show as in [5] 
that the function u satisfies 
(1.3) 

u(P) = 1 
u(Q) [log oP - Ql]dg(Q) - 

I iu(Q) log IP - QIdu(Q) 
2ir r Jr& iQ9fQ 
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for all P E D, where do,(Q) denotes the differential of the line element along F with 
respect to the point Q. Letting P tend to a point on F, and using the boundary 
condition in (1.2), we obtain 

(1.4) 

u(P) - - u(Q) [log IP- Ql]dor(Q) - log IP-Qlda(Q) ir anQflQ 

=_- 1 j g(Q) log IP - Qlda(Q), P E F. 
irr 

Then we can solve the boundary integral equation (1.4) for u on F and obtain 
the normal derivative from (1.2). Finally, the representation (1.3) gives u(P) for 
P E D. It is required for the use of (1.3)-(1.4) that the transfinite diameter of F, 
denoted by Cr, not be equal to 1. If it is 1, then (1.1)-(1.2) can be redefined on a 
rescaled region D in such a way that the new Cr $ 1 (see [5]). The solvability of 
(1.4) follows from the results of [10]. 

With the operator notation 

(1.5) (Av)(P) = !iv(Q)a& log IP - QIda(Q), P E F, 

and 

(1.6) (Bv)(P) = - v(Q) log P - Qlda(Q), P E F, 

equation (1.4) is written symbolically as 

(1.7) u(P) - (Au)(P) - (Bu)(P) =--(Bg)(P), P E F. 
C 

We introduce a parametrization 

r(t) = ( (t), rj(t)), 0 < t < 2ir, 

for the boundary F. Assume that each component of r is in C2?? (-o, o), the space 
of 2ir-periodic functions in C?, with Ir'(t)l = /'(t)2 + rj'(t)2 78 0 for 0 < t < 2ir. 
Using this parametrization, we rewrite the operators A and B as 

1 2, 
77, (S) - ( (t '(S) [r,(S) _ rj(t) ] 

(1.8) (Av) (t) = 7 j - [ ? ) - + v(s)ds 

and 
(1.9) 

C 2r 

(Bv) (t) =-j v(s) Ir'(s) I log jr(t) - r(s) Ids 

C 2r 

=- / v(s)Ir'(s)I{log t - sl + log 2ir - s + tj ? log 2ir - t + sl}ds ir J 

+ Cf v(s)Ir'(s) Ilog Lt-H2 ?tH2t ds 

for v E C2, [0, 2ir], where C27 [0, 2ir] denotes the subspace of 2ir-periodic functions 
in C[O, 2ir]. We denote by a(t, s) the kernel of the operator A. When s = t + 21ir 
with an integer 1, then 

2ir[('(t)2 + r7j(t)2] 
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Moreover, a(t, s) is in C2??(-oo, oo). In fact, it is clear that for s 78 t + 21-,r, a(t, s) 
is infinitely many times differentiable. To see that it is also differentiable at s = 
t + 21-r, we consider both numerator and denominator of a(t, s) as functions of s 
and represent them by their Taylor expansions at s = t + 21wr. Then we find 

1(rj"(t)('(t) - "(t)rj'(t)) + O(s - (t + 21ir)) a (ts 
(t)2 + rj'(t)2 + O(S - (t + 21ir)) 

Since the denominator of the right-hand side converges to ('(t)2 + r' (t)2 28 0 as 
s -* t + 21ir, one can see that for any integer n > 0 the nth derivative of the right- 
hand side of the above equation at s = t + 21ir exists. Since ( and r1 are 2ir-periodic, 
a(t, s) is 2ir-periodic. Hence, we conclude that a(t, s) is in C2??(-o, xc). In (1.9), 
log It - s has a singularity along the diagonal, log 12ir - s + tI and log 12ir - t + s 
have singularities at s = t + 2ir and s = t - 2ir, respectively. Let 

b(t ) 1 [ tr~~r(t) -r(s)l I 

Then it can be proved that 

b(t, s) E C? := C?({(t, s) : It-sl < 3ir, t E (-xc, xo)}). 

In fact, for s 78 t, t + 2ir, t - 2ir, b(t, s) is infinitely many times differentiable. To see 
that it is also infinitely many times differentiable at s = t, we consider jr(t) - r(s)12 
as a function of s and represent it by its Taylor expansion at s = t; we find 

b(t, s) = log 
+7 

(')2 - [(2ir- S + t)2(2ir- t + S)2_g 

Clearly, the right-hand side of the above equation is infinitely many times differ- 
entiable at s = t. Similarly, one can see that b(t, s) is also infinitely many times 
differentiable at s = t + 2ir and s = t - 2ir. 

Let K = A+B. For v E C2,[0,27ir], we have 

{2r 
(Kv)(t) = k(t, s)v(s)ds, 

where 

k(t, s) = -Ir(s)l log It-sl +-Irl(s)l log 12ir-s + tj +-Irl(s)l log 12r-t + sl 

lo F r(t) - r(s) I 
+ i L It - sJ12ir-s + tII2ir-t + sl_ 

1 7r/(s))[,(s) - (t)] - /'(s)[rj(s) - rj(t)] t s E [0, 2ir] ? [i (S) - ()2 ? [r (S) - rj (t)] 2 J 

In operator notation, equation (1.7) becomes 

(1.10) u(r(t)) - (K(u o r))(t) =--(B(g o r))(t), t E [0, 2ir]. 
C 
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The following lemma gives the differentiability of the function on the right-hand 
side of (1.10). We denote by C2,(-oo, oo) the subspace of 2ir-periodic functions in 
Cn (_00, 00). 

Lemma 1.1. If (g o r) E C2n, (-oo, oo), then B(g o r) E C2n, (-oo, oo). 

Proof. Let F(s) = g(r(s))Ir'(s)l. Applying the operator B to (g o r) yields 

(B(g o r))(t) = / F(s) log jr(t) - r(s)Ids. ir J 

Since F(s) log Ir(t) - r(s)I is periodic in both t and s with period 2ir, B(g o r) is 
periodic with period 2ir. We shall complete our proof by showing that for any 
ae E R, we have B(g o r) E Cn (E, 2ir + aE), which evidently implies the conclusion of 
the lemma. Noticing the periodicity of F(s) log jr(t) - r(s)I, we have 

C 27r+a 
(B(g o r))(t) = - F(s) log Ir(t) - r(s)Ids, t E (ae, 2ir + o), 

7r e 

that is, 

c 27r+ce 

(B(gor))(t) = F(s){logIt-sl+log 2ir-s+t + log 2ir-t+sl}ds 
7r e 

+j| F(s)log[lt s2 r(t) - r(s)- ds, 
ir It - sJ1ir -s?+tI27r -t?+sj_ 

t E (at, 2ir + at). 

It has been proved that the kernel b(t, s) of the last integral in the right-hand side 
of the equation above is in C?. Hence, the function defined by this integral is 
in Cn (a, 2ir + aE). We need only prove that the function I(t) defined by the first 
integral of the equation above is in Cn (a, 2ir + aE). Notice that 

t-a X27r+t-ca 

I(t) = F(t- s)log lslds?+ F(2ir+t- s)log slds 

47r-t+a 

+ I F(s -2r + t) log lslds. 
J27r-t+a 

Then it suffices to prove the following formula: for t E (ae, 2ir + aE), 

diI ra2-7r+t-a 

dt - J F(i) (t-s) log lslds + F(i) (2ir + t - s) log lslds 
I47r-t+a. 

+ F(')(s-2ir+t)loglslds+xi(t), i=0,1, ..., n, 
2i r-t+ a 

where xi is some function in C' [aE, 2ir + aE]. This formula holds trivially for i = 0 
with xo = 0. We assume that it holds for some integer i and prove that it holds for 
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i + 1. Notice that for t E (a, 2ir + a), 

d t-at 
dt j2r F(') (t - s) log lsids 

= j F(i ) (t - s) log IsIds 

dt f F (a) + t - s)alog - 2 a) i 
d 2r+t-ca 

j F((+) (2ir ? t - s) log Islds 

+ F(i) (a) log I12r + t - al - F(i ) (2r ? a) log It - al 

and 
d f47r-t+Q 

dt 127 F(i)(s - 2ir + t) log Islds 
7r-t+ac 

F(+) (s - 2ir + t) log jslds 

- F() (2r ? a) log 1I4r - t al F() (2)(a) log 12ir-t+al. 

Then, by the periodicity of F and these identities, we have that for t e- (a, 2ir+a), 

di+lI r a27r+t-a 
d 

] 
F(i+) (t - s) log Isids + F(2+l) (2ir ? t - s) log Isids 

dti t 27r- a -a 

47r-t+a 

= F('+) (s - 2ir + t) log Islds + xi+, (t), 

7or-t+oa 

where 

+~ +1(t) = a<(t) ? F() +(a) log (2s r + t-) xi+1 (t) = x (t)+Fi(clo (4 - t + a 

which is in C? [a, 2ir + a]. This completes the proof of the formula and the lemma 
as well. C 

Since (1.10) is a FRedholm integral equation of the second kind, we consider 
the following FRedholm integral equations in a more general setting that includes 
equation (1.10) as a special case: 

b 

(1.11) 4(t) - Aj k(t, s)>(s)ds = f (t), a < t < b. 

The kernel in (1.11) takes the form 

k(t, s) =HI (t, s) log(It -s) + H2(t, s) log(jT - s + tl) 

+ H3(t, s) log(IT - t + sl) + H4(t, s), 

where T = b - a. Let m > 1 be an integer. We assume that 

Hi, H4 G C2m({(t,s): -sl < -T, t E (-oo, oo)}), 
2T 

H2 C C2m({ (t, s) : -2T < s - t < -Ti t C (- oc, oo)}) 2' 
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and 

2 ~~~5 
H3 E C2m({(t, s):--T < s-t < 2T, t E (-oo, oo)}) 

2- 
are chosen so that the kernel k is periodic in both t and s with period T. In 
addition, we assume that Hj(t,t), H2(t, t), H3(t, t), and H4(t, t) are periodic in t 
with the same period T. The function f on the right-hand side is also assumed to 
be periodic in t with period T and in C2m(_oo, oo). We remark that a solution of 
equation (1.11) is also periodic with period T, since 

b 

0(a) = A j k(a, s)q$(s)ds + f (a) 

b 

= A j k(a + T, s)q(s)ds + f (a + T) 

b 

= A J k(b, s)q(s)ds + f (b) 

= d)(b). 

Clearly, equation (1.10) satisfies all conditions on (1.11) if g in (1.2) is in C2m(F). 
Let CT[a, b] be the space of continuous periodic functions on [a, b] with period 

T with the uniform norm 11 11 Then CT[a, b] is a Banach space. We now define an 
operator K: CT[a, b] -* CT[a, b] by 

b 

(1.12) (K+)(t) = j k(t,s)?(s)ds for / E CT[a,b]. 

In operator notation, equation (1.11) can be written as 

(1.13) X-AKq = f. 

Clearly, K is a compact operator in CT[a, b], with a weakly singular kernel. If A is 
not an eigenvalue of the operator K, then equation (1.11) has a unique solution in 
CT[a,b] [1, 2, 3]. 

In general, the solution of equation (1.11) is as smooth as f is in the interior 
of (a, b), but may have mild singularity at the endpoints a and b, namely, the 
derivative of q may be unbounded at a and b (see [11]). However, as argued in [13], 
the periodicity property of q ensures that q has no singularity at either endpoint, 
and then q is as smooth as f is in (-oo, oo). In fact, since k, f and q are all 
periodic with period T, the limits a and b in (1.11) can be replaced by a' and b' 
respectively, with b' - a' = T. In particular, choose a pair a', b' with b' - a' = T 
such that a E (a', b') and replace a and b in (1.11) by a' and b', respectively. Then 
the solution / of (1.11) is as smooth as f is at a, since a is an interior point of the 
interval [a', b']. Similarly, we prove that / is as smooth as f is at b. As a result, we 
conclude that q is as smooth as f is on (-oo, oo). 

In this paper, we derive an extrapolation scheme for the approximate solutions 
of (1.11) obtained by Nystrom methods with a subdivision of the given partition. 
An asymptotic expansion for such approximate solutions is presented. The paper 
is organized as follows: In ?2, we derive the Nystr6m method by using a quadra- 
ture formula of Sidi and Israeli, state the main theorem of this paper that gives 
an asymptotic expansion of approximate solutions, and derive the extrapolation 
scheme by using this asymptotic expansion. In ?3, we prove two different conver- 
gence properties of the approximate operators. In ?4, we give the proof for the 
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main theorem stated in ?2. In ?5, some computational aspects of the Nystrom 
method are considered and two numerical examples are presented to illustrate the 
theoretical estimates for the extrapolation scheme. 

2. NYSTR6M SCHEME AND EXTRAPOLATION METHODS 

In this section, we present a Nystr6m scheme and its extrapolation method and 
state the main theorem of this paper. We first recall a known result of Sidi and 
Israeli that will be used to establish the Nystr6m method on the basis of which the 
extrapolation procedure is defined. 

Let s3 = a + jh, j = 0, 1, . . ., n, h = (b-a)/n, where n is a positive integer. Let 
t E [a, b] be fixed. The following Theorem 2.1 can be found in [12, 13]. Some early 
work on Euler-Maclaurin expansions for integrals with singularity may be found in 
[8, 9], and a general extrapolation method is discussed in [7]. 

Theorem 2.1 (Sidi and Israeli). Let m > 1 be an integer. Let t be one of the 
points in 

Sn-I := f{S1,52,... * Sn-i}. 

Assume that ? E C2r [a, b]. Let 

G(s) = Is - tlf log(Is - tI)g(s), f > -1. 

Then 

f h n1 
G(s)ds =-(G(so) + G(sn)) + h E G(sj) 

Ia 2j=,s3 ot 
m-1 

2z 2p1 2t1 2, 
+ (2k)! EG(2,1) (a) - G(2-) (b)] h2 

r-1i 

- 2 5 [-((-3-2[) + ((-3 - 2/t) log(h)] 
g 

h2/>+3+1 
A=O 

+O(h2m), h -0, 

where (Tr) denotes the Riemann zeta function defined for Rer > 1 by C,(r) = 

Z0=1 n-7 and B2. are the Bernoulli numbers. 

Using this result, we develop a generalized Euler-Maclaurin formula on which 
our Nystrom scheme and extrapolation method are based. 

Theorem 2.2. Let m > 1 be an integer and t E [a, b] be fixed. Assume that 
g1, 94 E C2m [a- T,b+ T], 92 E C2m[a - T b + 3T ], and 93 E C2m[a - 3T, b+ T2] 
Let 

G(s) = log(Is-tt)gi (s) + log(IT-s + tl)g2(s) + log(IT-t + Sj)93(s) + 94(S), 
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and assume that G is periodic with period T on R = (-oo, oo)\{t+kT}2IO . Then 

(2.1) 

f G(s)ds = h E G(t+ jh)+gl(t)hlog ? +h(92(t)+93(t))log(T) 
Ja j$O, a<t+jh<b 

+ hg4(t) + 2 S (2g)! gi2b)(t)h2t+i + O(h2m) h 0. 

Proof. First, we prove that the theorem holds if t E Sn-1. Denote 

GI(s) = log(It - sj)gI(s), 

G2 (s) = log(ls - (T + t) 1)92 (s) 

and 

G3(s) = log(Is - (t - T)1)93(s). 

We rewrite 
Ib ?b+T - 

b+T 

Jlog(IT- S + tl)g2(s)ds =| G2 (s) ds - G2 (s) ds 

and 
{b b a 

log(T - t + sI)93(s)ds = I G3(s)ds - G3(s)ds, 

so that the singular point of each integral is always within the lower and upper 
limits. Applying Theorem 2.1 with 3 = 0 to each of the integrals f' GI (s)ds, 
fb+T 

G2(s)ds, fb+T G2(s)ds, fbT G3 (s)ds, and f-T G3 (s)ds, and applying the 

usual Euler-Maclaurin formula to ga 94(s)ds, we have 

j G(s)ds = 2(G(so) + G(sn)) 

n-i 

+h E G(sj) + h(g2(t) + g3(t)) log(T) + hg4(t) 
j=1,s3 $t 

+ 
(2, [G(2 i)(a) - G(2)i)(b)] h21 

-2 E [-('(-2/u) + ((-2[,t)log(h)] (2)!h + O(h2I). 
/.I=O 2[). 

By using the periodicity of G and noticing that ((0) = -1/2, ((-2g1) = 0 for 
,u = 1,2,... , and ('(0) =-1/2 log(2ir), we have 

jbG(s)ds=h E G(sj)+gl(t)hlog (24 ) 
j=i,s3 $t 

+ h(g2 (t) + g3(t)) log(T) + hg4(t) 

+2Z ((2 2b)g(2I)(t)h2+ O(h 
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Since t is one of the points in Sn-1, we have 
n 

, G(sj) = , G(t + jh). 
j=l,sj oAt jj0O, a<t+jh<b 

Hence, for t E Sn-I we have established formula (2.1). 
If t E [a, b] \ Sn-1, we choose an interval [a', b'] with b' - a' = T such that t 

coincides with one of the points in 

S'n-I := i {: j n ,2 n-1 

with sl = a' + jh. By the periodicity of G, we have 

b bl 

G(s)ds= j G(s)ds. 

Since t E [a, b], if h < T, we can choose a', b' such that a _T < a', b' < b +T. 1 2 ~~~2 - ' 2 
Because we have proved in the last paragraph that formula (2.1) with a and b 
replaced by a' and b' holds for t E S'1, applying the formula to the integral 

fa, G(s)ds gives 

f G(s)ds = h Z G(t + jh) + gi (t)h log 2 ) 
Ja j$O, a'<t+jh<b' 

+h(g2(t) + g3(t)) log(T) + hg4(t) 

+2 f (2A.) ! )9 (t)h2l>+ + O(h2m) h - 0. 

Again, by the periodicity of G, we have that 

S G(t + jh)= 
5 G(t + jh). 

j0O, a'<t+jh<b' j0O, a<t+jh<b 

This completes our proof. [ 

In Theorem 2.2, we assume that m > 1 in order to have a complete expansion 
as given above. If m = 1, then it can be verified (see [8, 9]) that the following 
asymptotic expansion holds: 

f G(s)ds = h S G(t + jh) + gi(t)h log (2K) 
Ja j$O, a<t+jh<b 

+h(92(t) + 93(t)) log(T) + hg4(t) + 0(h2), h -O 0. 

We now use Theorem 2.2 to develop the Nystr6m scheme for solving equation 
(1.11). Let K be the integral operator defined by (1.12) with Hi, i = 1,2,3,4, 
given in ?1 and 0 the solution of equation (1.11). Applying Theorem 2.2 to G(s) = 

k(t, s)0(s) yields 

(Kk)(t) = h E k(t,t + jh)9(t+ jh) + HI(t,t)q(t)h log 
h 

j0&0, a<t+jh<b 

+h(H2(t, t) + H3(t, t)) log(T)>(t) 

+2'(-2) &2[L 

?hH4(t, t>k(t)?+2 S (2g)! &S21I' [Hi1(t, s) k(s) ]s=th2/'z+l ?O(h 2m). 
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For each positive integer n, we define an operator Kn : CT[a, b] -* CT[a, b] by 

(2.2) 

(Kn ) (t) = h Z k(tt + jh)O(t + jh) + HI(t,t)(t)h log (2h) 
3,40, a<t+jh<b 

+ h(H2(t,t) + H3(t,t))1og(T)O(t) + hH4(t,t)O(t), 

where h = (b - a)/n. Then, Kn approximates K with truncation error 

(2.3) 
rn-1 ~(/(2/) &92p 

(K$) (t) = (Kn q) (t) + 2 ) [H (t s) O(s)] h2/2+ 

+ O(h 2m) for 0 E C2m(-oo, o), 

where we use C2m (-oo, oo) to denote the space of T-periodic functions in 
C2m (_oc, oc). Replacing K by Kn in equation (1.11) leads to the following ap- 
proximate equation: 

(2.4) On (t) - A(KnOn ) (t) = f (t) , t E [a, b]. 

Equation (2.4) is called the Nystrbm scheme for solving equation (1.11), and a 
solution of (2.4) is called a Nystr6m solution for equation (1.11). This equation is 
the one we use to generate approximate solutions On to the solution of (1.11). In 
the next section, we will show that the operators Kn are uniformly bounded with 
respect to n. If IIAKnll < 1, then equation (2.4) has a unique solution and the 
solution is continuously dependent on the right-hand side. This condition can be 
weakened by assuming I(I - AK)-1A(K - Kn)KnI < 1. Since our main interest 
of this paper is to study the asymptotic analysis for the solution of (2.4), we will 
simply assume, without further mentioning, that (I-AKn)-1 exists and is uniformly 
bounded for sufficiently large n. More discussion about the computational issues of 
equation (2.4) will be given in ?5. 

We now state the main result of this paper, which gives an asymptotic expansion 
of the Nystrbm solution On. The proof of this theorem is given in ?4. 

Theorem 2.3. Let 0 be the solution of equation (1.11) and On the solution of 
equation (2.4). Suppose that [a, H1 (t, s)] s=t is a periodic function of t with period 
T, for i = 1, 2,... , 2m - 2. Then the following asymptotic expansion for On holds: 

2m-1 

On (t) = q$(t) - v3 (t) h3- E Vq(t)hq + O(h 2m) , t E [a, b], 
q=5 

where vq are some functions independent of h. 

We remark that a sufficient condition for [ "0I H, (t, s)]s=t being periodic is that 
H1 (t, s) is periodic in both t and s. 

Theorem 2.3 suggests the following extrapolation algorithm for O)n: For each 
t c [a, b], define 

On, 0 (t) = On (t), 

On~,I(t) -=8q2n,o(t) 
- qn,o(t) 

7 
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and 

n, e(t) = 2f02n,,-l (t) - qn,e-l (t) e = 2,3. 
2f+3 -1 

From Theorem 2.3, we obtain immediately the order of convergence for the ?th 
extrapolated approximate solutions q5n,e. This result is summarized in the following 
theorem. 

Theorem 2.4. Suppose that the conditions of Theorem 2.3 hold. Then 
2m-1 

qn,e(t) = 4)(t) + , ve, (t)h3 + O(h2m), t C [a, b], f = 1, 2, .... 
j=f +4 

where vf,j are functions independent of h. 

It follows from Theorem 2.4 that the first extrapolation increases the conver- 
gence order from 3 to 5, and after the first step each extrapolation increases the 
convergence order by one. 

3. CONVERGENCE PROPERTIES OF Kn 

In this section, we study some properties of the approximate operators Kn de- 
fined by (2.2), including pointwise convergence and uniform convergence of (Kn q)(t) 
for t C [a, b]. These results are needed for our further development, and they are of 
independent interest as well. 

We first prove the pointwise convergence of (Kn?q)(t), for every X C CT[a, b], 
in [a, b]. To do this, we introduce some additional notation and state a known 
result. Let M designate the class of functions g > 0 which are continuous and 
nondecreasing in [a', b') and such that 

t 

Let BM designate the class of functions y that are continuous in [a', b') and such 
that for each y we can find a e M with Iy(s)I < 3(s) for s C [a',b'). Define a 
sequence of quadrature formulas for a function y by 

n 

Qn(Y) = EWnkY(8nk), 
k=1 

where 

a' < Snn <Sn,n-1 < -<8n1 SnO = b-. 

The following theorem of Rabinowitz can be found in [6, p. 182]. 

Theorem 3.1. Suppose that 
rbl 

(3.1) lim Qn(Y)=f/ y(s)ds 
n--+oo 

for all y E C[a', b'] and that there exists a constant c > 0 such that 

| Wnki < C(Sn,k-1 - Snk) 

for all sufficiently large n and for all k such that 

Isnk -b l < 6 
for some fixed 6 > 0. Then equation (3.1) holds for all y C BM. 
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We are now ready to state and prove pointwise convergence of (Kq,5)(t). 

Theorem 3.2. Let q C CT [a, b]. Then (Kn?) (t) converges pointwise to (Kq) (t) 
fort c [a,b], asn -oo. 

Proof. Denote the operators K, for q5 c CT [a, b], by 

(Kn 0) (t) = h , k (t, t + jh) o/(t + jh). 
j#O, a<t+jh<b 

Then, from equation (2.2) we have 

(Kn ) (t) = (Kn ) (t) + Hi (t,I t) 0(t) h log (2 )r 

+ h(H2(t, t) + H3(t, t)) log(T)q$(t) + hH4(t, t)q$(t). 

Since the last three terms vanish if h -- 0, it is sufficient to show that (KnO)(t) 
converges to (Kq)(t) pointwise. By making use of the periodicity of k and b, we 
rewrite 

(3.2) (Kq5)(t) = f k(t, s)>(s)ds. 
tT 

Equivalently, 

(3.2') 
rt pt 

(Kz) (t) j logot - s))H1 (t, s)q(s)ds + j log(jT - s + t))H2(t, s)o(s)ds 
tT tT 

rt t 

+ j log(IT - t + sI)H3(t, s)4(s)ds + j H4(t, s)q0(s)ds 
tT tT 

Now we rewrite (Kn?q)(t), according to equation (3.2) by using the periodicity, 
as 

n-1 
(3.3) (Knsq)(t) = h E. k(t, t + jh - T)f(t + jh -T) 

j=1 

that is, 

(3.3') 
.n-1 

(Knq) (t) = h E Hi (t, t + jh - T) log(it - (t + jh -T)I)(t + jh -T) 
j=1 

n-1 
+hE H2(t, t + jh - T) log(IT - (t + jh - T) + tI)q(t + jh - T) 

j=i 

n-I 

+hEH3(t, t + jh - T) log(jT - t + (t + jh - T)I)b(t + jh - T) 
j=1 
n-I 

+hE5H4(t, t + jh - T)q(t + jh - T). 
j=i 

Since the integrands of the second and fourth integrals on the right-hand side of 
equation (3.2') are continuous on [t - T, t], the second and fourth summations on 
the right-hand side of (3.3') converge to the corresponding integrals, respectively. 
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The integrand of the first integral on the right-hand side of (3.2') has a singularity 
at s = t, and the first summation on the right-hand side of (3.3') defines a quad- 
rature formula Q,(y), where y(s) = Hi(t, s) log(It - sI)q5(s), for the first integral 

ft-T y(s)ds on the right-hand side of (3.2').It is clear that if the integrand of this 
integral is replaced by a continuous function, the corresponding quadrature con- 
verges to the integral. By Theorem 3.1, in order to show QT(y) - Jt_y(s)ds, we 
need only prove y E BM. If T = b-a < 1, then 

IY(s) I < m_Tax< |fH1 (t, s)O(s) I I log(it - s) I, 

and the function on the right-hand side is in class M. If T = b -a > 1, then 

IY(S)|I < _m<asx< Hif(t, s) 0(s) I gt (s), 

where 

t() = {log(T) if s8C [t-T, t-1], 

I log(It - sl) I + log(T) if s E (t - 1, t). 

It can be shown that the function on the right-hand side is in class M. Hence in 
both cases, we conclude that y(s) as a function of s is in class BM. By Theorem 3.1, 
the first summation on the right-hand side of (3.3')converges to the first integral 
on the right-hand of (3.2').Notice that the third integral on the right-hand side of 
(3.2') can be rewritten as 

r-t+T 

log(IT - t - sI)H3(t, -s)q(-s)ds, 

whose integrand has a singularity at s = -t + T, and the third summation on the 
right-hand side of (3.3') can be rewritten as 

n-1 

h ,j H3(t, -(-t + T - jh)) log(IT - t - (-t + T - jh)1)4(-(-t + T -jh)) 
j=1 

which defines a quadrature Qn(Y*), where y*(s) = log(IT - t - sl)H3(t, -s) (-s), 

for f-t+T y* (s)ds. As seen before, we need only show y* C BM in order to conclude 

that Qn (Y*) - jt+T y* (s)ds and then in turn conclude that the third summation 
on the right-hand side of (3.3') converges to the third integral on the right-hand 
side of (3.2'). If T = b-a < 1, then 

IY (s)I t<1maXt+T 1H3(t, -s)q(-s)II log(IT - t - s), 

and the function on the right-hand side is in class M. If T = b -a > 1, then 

IY() _<m<ax +IH t- s)? (-s) Igt*(s), 

where 

g(* _s) log(T) if s e [-t, -t + T - 1], 
I log(IT-t-ss)j + log(T) if s E (-t + T- 1,-t + T). 

It can be shown that the function on the right-hand side is in class M. Hence, in 
both cases we conclude that y* (s) as a function of s is in class BM. It follows from 
the above derivation that (Kn q) (t) converges to (Ko) (t) pointwise for t C [a, b]. 
The proof is complete. [L 
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We now establish the uniform convergence of {(K,b) (t)} for t c [a, b]. To this 
end, we need the following three lemmas. 

Lemma 3.3. Let n be a positive integer. Then 

(3.4) EZ!log (2) < 1. 
j=1 

Proof. Since - log(s) is decreasing and nonnegative on (0,1], we have 

- 
1 log (2)|= E 1 - log (2) < <;-log (s)ds = 1. 3 j=1 3= 

For any positive integer n, we rewrite the operators Kn, using the periodicity 
property of k and q$, in the following way: 

(3.5) 

(Kn(q)(t) = h E k(t, t + jh)q(t + jh) + H1(t, t)q(t)h log (2s) 
j=1 

+ h(H2(t, t) + H3(t, t)) log(T)q$(t) + hH4(t, t)q5(t). 

Lemma 3.4. The sequence {llKnll} is bounded. 

Proof. By equation (3.5), there holds, for all t c [a, b], 

(Knq)(t)j < j lhk(t,t +jh)III$11 + h log (I2) Mil q$l 
j=1 

+h(M2 + M3)1 log(T) I IJqIJ + hM41q11, 

where 

Mi max jHj(tIs)j, j-=1,2,3,4. 
It-sj ?T,tE [ab]j 

Since 

s log (- )O as s - O 

and h = b-a there exists a positive constant Ci such that hl log( h )I < Ci for all 
n. Thus, 

n-1 

J(Knb) (t)j| < E jhk(tj t + jh)l| + C Mi 
ij=l 

+ (M2 + M3)1 log(T)I(b -a) + M4(b -a)\ 11fill. 
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Using the expression for k(t, t + jh), we conclude 

n-1 n-1 n-1 

lhk(tlt+ jh)l < M E lhlog(jh)I +M2 E Ihlog(IT-jhl) 
j=1 j=1 j=l 

n-1 

+M3 E Ih log(IT + jhl) I + M4 
j=- 

n-1 n-1 

? (M + M2) , Ih log(jh)I + M3 , Ih log(T + jh)I + M4. 
j=1 j=1 

By Lemma 3.3, we have the following estimate 

(3.6) SEhl log(jh)l < (b-a) I log(b - a)l + log (2) ] 

< (b-a)[I log(b-a)I + 1], 

and thus En- 1 hIk(t, t+ jh)I is bounded by a constant. This implies that IIKnq$I < 

Cllqll for some constant C > 0 and for all n. M 

Lemma 3.5. Let q$ E CT[a, b]. Then (Knq$)(t) is equicontinuous on [a, b], that is, 
for every E > 0, there exists 6 > 0 such that 

I (Knq$) (t)- (Kn4O)(S)l < K 

for all n and all t, s E [a, b] with It-sl < 8. 

Proof. If q$ = 0, then the statement of the lemma holds trivially. Assume q$ # 0. 
Again, by using equation (3.5), we have 

n-1 

(Knq)(t) - (Knq)(s) = h 5[k(t, t + jh) - k(s, s + jh)]q(s + jh) 
j=1 

n-i 

+h 5 k(t, t + jh) [q(t + jh) - q(s + jh)] 
j=l 

+h log (h2) [Hi (t, t)q(t) - Hi (s, s)q(s)] 

+h[H2(t, t)q(t) - H2(s, s)q$(s)] log(T) 

+h[H3(t, t)q(t) - H3(s, s)4(s)] log(T) 

+h[H4(t, t)4(t) - H4(s, s)4(s)] . 

Let c > 0. Since H4(t, s)4(s), H3(t, s)4(s), H2(t, s)4(s) and Hi(t, s)4(s) are uni- 
formly continuous on [a, b] x [a, b], there exists 61 > 0 such that,whenever It-sI < 61, 
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we have 

H4(t, t)4(t)- H4(s, s)4(s) < 6(b )' 

H3(t, t)q$(t) - H3(s, s)4(s) < 6 log(T)(b - a)' 

JH2 (t, t)q(t)- H2 (s, s)4(s) < 6 log(T) (b-a 

and 

|Hi(t,t)4(t)-Hi(s,s)4(s)j< C 
6Ci' 

where Ci is a bound for hI log( given in the proof of Lemma 3.4. It follows that 

hjH4(t, t)4(t) - H4(s, s)4(s) I < 6 
6 

hJH3 (t, t)4(t) - H3 (s, s)4(s) log(T) < 
6 

hJH2 (t, t)4(t) - H2 (s, s)4(s) log(T) < 6 

and 

IH1 (t, t)q(t) - Hi (s, s)q(s) Ih log (h2) < 6 

By inequality (3.6) and Lemma 3.3, En=L7 hI log(jh) I is bounded for all n. Let C2 
be its bound. Since H1 (t, s), H2 (t, s), H3 (t, s) and H4 (t, s) are uniformly continuous 
on {(t, s) t-sI < T, t E [a, b]}, there exists 62 > 0 such that, whenever It-sI < 62, 
we have 

IH, (t, t + jh)- Hi (s, s + jh) I < 2 

H2 (t, t + jh)-H2(s, s + jh)l < 244C2' 

JH3(t, t + jh) - H3(s, s + jh)l < 24flq$fl maxO?S?T log(T + s)J 

and 

JH4(t, t + jh)-H4(s, s + jh)l < 24(b-a)l K 
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Then 
n-1 Z hIk(t, t + jh) - k(s, s + jh)I 
j=1 

n-1 

?E hIH(t,t+ jh)-Hi(s,s+ jh) 1I log(jh)I 
j=1 

n-1 

+ S hIH2(t, t + jh) - H2(s, s + jh) II log(T -jhl) 
j=1 

n-1 

+ZhIH3(t, t+ jh) - H3(s,s+ jh) og(IT+ jhl) 
j=1 

n-1 

+EhIH4(tj t + jh) -H4(s, s + jh)I 
j=1 

n-1 2e 2e 
? E hl log(jh) 1 24 H4H C2+ 24||41 

611011' 

By the proof of Lemma 3.4, jn1l hI k(t, t + jh) is bounded. Assume it is bounded 
by C3. Since q$ is uniformly continuous on [a, b] and periodic, there exists 63 > 0 
such that for all j and all h > 0 

q$(t + jh)-q$(s + jh)I <603 

whenever It - s < 63. Let 6 = min{61, 62, 63}. It follows from the above derivation 
that 

(Kn$) (t)- (Kn0) (S) I < c 

whenever It -s1 < . [1 

Theorem 3.6. Let q$ E CT[a, b]. Then (Knq) (t) converges uniformly to (Kq) (t) 
on [a, b], as n -+ oc. 

Proof. Let c > 0. Since {(Knq$)(t)} is equicontinuous on [a, b], there exists 6 > 0 
such that 

I(Knq$)(t) - (Knq5)(s)I < c/3 whenever t, s E [a, b], It - s < 6, for all n. 

Let a = to < t1 < * < tm = b be a fixed partition of [a, b] with tj-tj-1 < 6 
for j = 1, 2, ... , m. By assumption, (Knq$)(tj) converges to (Kq)(tj) for each j. It 
follows that there exists N > 0 such that 

I(Knq$)(tj) - (Kn+p40)(tj)| < c/3 whenever n > N, p = 1, 2, ... ,j = 1,2, ... , m. 

Notice that for t E [a, b] we have t E [tj-1i, tj] for some j and thus tj - t < 8. Hence, 

I (Knq)(t) -(Kn+p0) (t) I< ? (Knq$) (t)- (Kn4) (tj) I+ I(Knq$)(tj) -(Kn+p4) (tj) I 

+I(Kn+pq$)(tj) -(Kn+p $)(t)I < c 
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whenever n > N and p = 1, 2.... Hence, 

KqKn - Kn+p?0j < 6 

whenever n > N and p = 1, 2,.... Consequently, {Kn?q} is a Cauchy sequence in 
CT [a, b]. Since CT [a, b] is complete, (Kn q) (t) converges uniformly to a function in 
CT[a, b]. Again, since (Kn4)) (t) converges to (K4)) (t) pointwise, (Kn b) (t) converges 
to (Kq) (t) uniformly. [1 

As a direct consequence of Theorem 3.6, we show that if (I - AKn)-1 exists and 
is uniformly bounded for sufficiently large n on CT [a, b], then the unique solution 
On of (2.4) converges to the unique solution 4) of (1.11). In addition, suppose that 
H1, H2, H3, H4, and f satisfy the assumption of this paper with m = 2. Then, 
11-qnll < Ch3, where C is a constant independent of n. To see this, we note from 

(1.11) and (2.4) that 

q$- )n = A(K-Kn)q? + AKn (q$-qn) 

Thus, 

q$-q$On = (I-AKn)-1A(K-KKn)O. 

By Theorem 3.6, we have 

11j4-qj?nll < CiAllKq-Knil j-+O as n-- x . 

If the additional assumptions are imposed, using (2.3) with m = 2, we find 

114)- On)lI = 0(h3). 

4. PROOF OF THEOREM 2.3 

In this section, we present the proof of Theorem 2.3. 

Proof of Theorem 2.3. To prove the theorem, we show that there exist periodic 
functions vq E C2(m-L 2)(- , xc) with period T such that 

2m-1 

(4.1) 17n(t) = 4)(t) - On (t) + E Vq(t)hq 
q=3 

is of 0(h2m), where LsJ denotes the largest integer not greater than s. In the course 
of proving this, we shall construct the functions vq. 

Applying the operators I - AKn to the both sides of (4.1) gives 

(4.2) 
2m-1 

[(I - AKn))in](t) = [(I - AKn))q](t) -[(I - AKn)On](t) + E [(I - AKn)vq](t)h 
q=3 

Since 4 E CT2M(-, oo), Vq E C(ml 2) _ 00) if q < 2m-2, we have asymptotic 
expansions for (I - AKn)o and (I - AKn)vq for q < 2m -2 in the form of (2.3). In 
addition, since V2ml, V2m-2 E CT(-oo, Xo), we have 

[(I - AKn)Vqq](t) = [(I - AK)Vq](t) + 0(h2), q = 2m - 1, 2m - 2. 

Using the asymptotic expansions mentioned above and the relation 

[(I - AK)4)](t) = [(I - AKn))n](t) = f (t)l 
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we find that the right-hand side of (4.2) becomes 

r -i 
2r2n- 

1 

-2Z ((2/)! ) 292 [Hi (t, s) (s)]S=th2' h + > [(I - AK)vq](t)hq 

2m-~4m-LqJ-1 (( ) a2 

-2 S S ((21) 2p) aI 
[Hi (t, s)vq(s)],=th22+q+l + O(h 2). 

Rearranging the terms in the third summation of the above quantity with respect 
to the order of h, we rewrite this summation as 

rn-1~ q (2u + / -2qa2(q-A-1) 
-2 mE 

E 
IC (2p%+2-2q)a (-M 

[Hi (t, 8) V2M,+ (s) ],=t h2 
-23 

5 
t= (2q - 2,u - 2)! a52(q-b,-1) 

[1t 

-2 Ct-2 (2q - 2)! a 5(q> [Hl (t, s)V2bt(s)]S=th2q+l + O(h2m)l 

Therefore, the right-hand side of equation (4.2) becomes 

fi2 U 2('(-2q) a2q 2+ q{ [(I- AK)V2q+l](t) - 
(2q)! 92q [Hi(t, s)(s)]s=t h 

+ [(I - AK)V4](t)h4 

+ {[(I - AK)v2q+1)(t) 2()2q) a 2q [Hi (t, s)O(s)]s=t 

m-1 

+ I:/ [(I- AK)V2q] (t) 
q=3 

q ((21 + 2 - 2q) 92(q-A-1) l 2q 
-2E - + 2 - 2q) ( s)v2I,+1(s)]s=t h 

=,(2q - 24 - 2)! aS2(q-pt1) [it 

+ O(h2m). 

We now choose vq(t) to be the solutions of the following integral equations: 

[(I - AK)V2q+1](t) = (2 )!) 02q[HI (t, s)q(s)]s=t, q = 1,2, 

[(I - AK)v4](t) = 0, 

[(I - AK)V2q+l](t) = 2((-2q) g2qj;[H1 (t, s)q(s)]S=t 

+21 (/(2JL - 2q) a02(q-bt) +2 E 
(2q 

- 2 )! (52(q-,) [Hi(t, S)V2,(S)]s=t, 

q=3,... ,m-l 
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and 

q-2 ((2q+2 -2)! 02(q-/2-1) [Hi (t s)V2bt+ (8)Is t [(I - AK)V2q] (t) =2 [1: ((2q - 2u -2)! ~5(q-l-l)[H(,)v1+(]s, 

q= 3,... ,m-1. 

Each of these equations has a unique solution. In particular, V4 = 0. The functions 
Vq are defined recursively by the solutions of the above equations. The periodicity 

of ['9THi (t, s)] implies that the functions on the right-hand side of the above 

equations are all periodic and so are the solutions. By the assumptions on $ and 

H1, we conclude Vq E C2 2 L C) (-o, c). Once these functions are chosen, we 
have 

[(I - AKn)r1n](t) = O(h 2)v 

By assumption, there exists a constant C such that fl(I - AKn)-1l < C, and thus 
1n-(t) = O(h2m). The proof is complete. [1 

5. COMPUTATIONAL ASPECTS AND NUMERICAL EXAMPLES 

In this section, we consider some computational aspects of the approximate 
equation (2.4) and present two examples to illustrate the accelerated convergence 
of extrapolation method. 

Notice that the definition of Kn in equation (2.4) is unconventional. In con- 
ventional quadrature schemes for integral equations with continuous kernels (see 
[1]), (KnNq)(t) can be expressed as a combination of q$(sk), and the coefficients may 
depend on t. In other words, Kn maps a vector (W(S1),... , q(sn)) in Rn to a 
continuous function. However, in the current case, (KnNq)(t) is defined in terms of 
q$(t + jh), a < t + jh < b. The function (Kn q)(t) not only depends on n values of 
q$ at n nodes, but also depends on the values of q$ at every point in [a, b]. 

To solve equation (2.4), we let t = si for i = 1, 2, ... , n in the equation. Since the 
extrapolation method will use two approximate solutions corresponding to different 
stepsizes h, we denote q$4 = On (si). In views of the periodicity of k, 4) and f, if 

qOn is a solution of equation (2.4), then (qh, ... , oh$) satisfies the following algebraic 
equations: 

[1 - Ahlog (s_) Hi(si, si) - Ah(H2(si, si) + H3(si, si)) log(T) - AhH4(si, si) oh 

n 

(5.1) -Ah E k(si,sj)q$ =f(si), i=1,2,... ,n. 
j$i, j=1 

This system of linear equations is called the discrete Nystr6m method, and the 
solution of the system is called the discrete Nystr6m solution for (1.11). Clearly, 
if the system (5.1) has a unique solution (oh,... Ohn), then q$4 = On (si), i = 

1, 2, ... , n. In fact, it can be shown that if equation (2.4) has a unique solution O$n 
for any continuous periodic right-hand side f, then the linear system (5.1) has a 
unique solution. To see this, we specialize the equation (2.4) at the nodes si and 
we conclude that (5.1) has a solution for any right-hand side. This implies that the 
coefficient matrix of the system must be of full rank. Since it is a square matrix, 
it is nonsingular. However, by assumption, for a sufficiently large n, equation (2.4) 
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has a unique solution. Hence, we conclude that for a sufficiently large n, the linear 
system (5.1) has a unique solution (oh'... , qh) and q = On (Si). Some points of 
the above discussion were motivated by [14]. 

Upon solving the linear system (5.1), we obtain the values of On at the given 
nodes Si. Thus, by using the extrapolation scheme described in ?2, we obtain the 
discrete extrapolated approximate solutions, which have a higher order of conver- 
gence. 

We next consider two examples. 

Example 1. Consider the boundary value problem 

Au(P) = 0, P E D, 

9qu(P) =-u(P) +g(P), P E :=D, 
&flp 

where g(P) = 1 and D is the region 

(X)2 (y)2< 
(a )+(b) 

with (a, b) = (1, 2). It is not hard to verify that u(x, y) = 1 is the unique solution 
of this problem. We will use our methods to obtain numerical solutions to this 
problem. Let 

x = cost, y = 2sint, 0 < t < 2ir. 

With this parametrization, the unit exterior normal vector of r at t is 

( 2x y 2cost sint 

V1 + 2'2 1+3X2,J x 4cos2t+sin2t 4cos2t+sin t,J 

Since r(t) = (cost, 2 sint), we have jr'(t)J = 1+ 3 cos2 t =A 0. Hence, 

1r k (t,s) = - V/1?+3cos2s`(log It -.1 ?log127r - s?+tI?+log127r - t?sI. 

+ log V'(Cos t - cos s)2 + 4(sin t - sin S)2 
It-sl(2r--s+t)(27r-t+s) 

1 2 cos s(coss - cos t) + sin s(2 sins - 2 sin t) 
? (cos s-cos t)2 +(2 sins-2 sint)2 

V/ 3cos2 s log 4 sin2 ( - ) + 3(sint - sinS)2 

1 4 sin2 t2s 

r 4 sin2 t2s + 3(sint-sinS)2 

The formula given in Theorem 2.2 is used to calculate the integral in the right- 
hand side of (1.10) and the discrete Nystrom method (5.1) is used to compute 
approximate solutions of (1.10). The following two tables give the error of the 
approximate solutions using different stepsizes h and of the extrapolated solutions, 
respectively. In Table 1, we use ei = u(r(ti)) - q$ to denote the error of the Nystrom 
solutions corresponding to the specified h. The rate of convergence guaranteed by 
Theorem 2.3 is of order 3. 
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TABLE 1. Errors of the Nystr6m solutions 

ti ei with h=- 2' ei with h= rate ei with h= 2 rate 
0.628319 0.121881D-02 0.131313D-03 3.21 0.162984D-04 3.01 
1.256637 -0.241312D-02 -0.350908D-03 2.78 -0.439971D-04 3.00 
1.884956 -0.241325D-02 -0.350658D-03 2.78 -0.442431D-04 2.99 
2.513274 0.121870D-02 0.131397D-03 3.21 0.162478D-04 3.02 
3.141593 0.163276D-02 0.189617D-03 3.11 0.236295D-04 3.00 
3.769911 0.121862D-02 0.132229D-03 3.20 0.171674D-04 2.95 
4.398230 -0.24131ID-02 -0.351662D-03 2.78 -0.435820D-04 3.01 
5.026548 -0.241343D-02 -0.351146D-03 2.78 -0.437735D-04 3.00 
5.654867 0.121874D-02 0.131003D-03 3.22 0.163326D-04 3.00 
6.283185 0.163256D-02 0.189412D-03 3.11 0.236443D-04 3.00 

In Table 2, we list the error of the extrapolated solutions by using the extrap- 
olation algorithm described in ?2, where e(1) and e(2) denote the error of one-step 
extrapolation by using the approximate solutions corresponding to h = 2' and 
h = 2' and to h = 2' and h = 2, respectively. The rate of convergence guaran- 
teed by Theorem 2.4 is of order 5. 

TABLE 2. Errors of extrapolated solutions 

ti ei(') 0 00e((2) rate 
0.628319 -0.240441D-04 -0.132255D-06 7.51 
1.256637 -0.563067D-04 -0.152681D-06 8.53 
1.884956 -0.560020D-04 -0.469600D-06 6.90 
2.513274 -0.239315D-04 -0.202012D-06 6.89 
3.141593 -0.165464D-04 -0.830877D-07 7.64 
3.769911 -0.229695D-04 0.730024D-06 4.98 
4.398230 -0.571699D-04 0.429444D-06 7.06 
5.026548 -0.565343D-04 0.136893D-06 8.69 
5.654867 -0.243885D-04 -0.488917D-07 8.96 
6.283185 -0.167515D-04 -0.368345D-07 8.83 

Comparing Tables 1 and 2, we see that the error ei1) of one-step extrapolation 
is much smaller than the error ei of the Nystr6m solution with h = 27r/20, and the 

error e(2) of one-step extrapolation is much smaller than the error ei of the Nystr6m 
solution with h = 2ir/40. Both Table 1 and Table 2 show that the convergence rates 
agree with theoretical estimates shown in Theorem 2.4. This example illustrates 
that the extrapolation process accelerates the order of convergence. 

Example 2. In Example 1, if we choose u(x, y) = ex cosy, and g = a(P) + u is 
calculated accordingly; then we have the following numerical results. Here we use 
the same notation as in the previous example. 
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TABLE 3. Errors of the Nystrbm solutions 

tt ei with h= e with h= rate ei withh | rate 
0.628319 -0.265869D-01 -0.304603D-02 3.13 -0.384348D-03 2.99 
1.256637 -0.430752D-02 -0.612696D-03 2.81 -0.762916D-04 3.01 
1.884956 -0.181330D-02 -0.180546D-03 3.33 -0.222135D-04 3.02 
2.513274 -0.645594D-03 -0.856597D-04 2.91 -0.108117D-04 2.99 
3.141593 0.316669D-02 0.410404D-03 2.95 0.505071D-04 3.02 
3.769911 -0.645601D-03 -0.865535D-04 2.90 -0.107504D-04 3.01 
4.398230 -0.181310D-02 -0.181187D-03 3.32 -0.239680D-04 2.92 
5.026548 -0.430762D-02 -0.612874D-03 2.81 -0.761611D-04 3.01 
5.654867 -0.265870D-01 -0.304600D-02 3.13 -0.384166D-03 2.99 
6.283185 0.502972D-01 0.590768D-02 3.09 0.743281D-03 2.99 

TABLE 4. Errors of extrapolated solutions 

ti ei') ei 2 - rate 
0.628319 0.316946D-03 -0.410773D-05 6.27 
1.256637 -0.848634D-04 0.337563D-06 7.97 
1.884956 0.527035D-04 0.405493D-06 7.02 
2.513274 -0.566912D-05 -0.119119D-06 5.57 
3.141593 0.166489D-04 -0.906675D-06 4.20 
3.769911 -0.668961D-05 0.786476D-07 6.41 
4.398230 0.519436D-04 -0.150824D-05 5.11 
5.026548 -0.850536D-04 0.512205D-06 7.38 
5.654867 0.317002D-03 -0.390363D-05 6.34 
6.283185 -0.433684D-03 0.551057D-05 6.30 
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